Стратегическое ядерное вооружение СССР и России.  
 

Ядерное
оружие

 


Развитие реакторной технологии производства плутония

Для производства плутония в СССР использовались в основном реакторы канального типа, использующие в качестве замедлителя нейтронов графит, и охлаждаемые водой, прокачиваемой по каналам с топливными элементами. Топливо — блочки природного металлического урана в алюминиевой оболочке — загружалось в вертикальные технологические каналы, проделанные в графитовой кладке реакторной зоны. Для выравнивания радиального распределения мощности и потоков нейтронов в реакторной зоне водо-графитных промышленных реакторов по ее периферии располагались каналы с топливом из высокообогащенного урана.

Всего в СССР было сконструировано три поколения графитовых реакторов. Реактором первого поколения является реактор А, пущенный в эксплуатацию в июне 1948 г. в Челябинске-40 (впоследствии Челябинск-65). Спроектированный Н. А. Доллежалем реактор имел мощность 100 МВт (позднее она была доведена до 900 МВт). Охлаждение реактора осуществлялось по прямоточной схеме —вода-охладитель забиралась из внешнего источника, прокачивалась через реакторную зону и сбрасывалась в окружающую среду. Топливо (около 150 т урана) располагалось в вертикальных каналах 1353-тонной графитовой кладки.

Реактор второго поколения (например, реактор АВ-1, пущенный в эксплуатацию в 1950 г.) представлял собой вертикальный цилиндр графитовой кладки с вертикальными каналами для топлива и управляющих стержней. По сравнению с реактором А, АВ-1 имел большую мощность и был более безопасным. Как и реактор А, реакторы второго поколения были прямоточными и использовались исключительно для наработки оружейного плутония.

Реакторы третьего поколения, построенные после 1958 г., проектировались как реакторы двойного назначения.88 Представителями реакторов третьего поколения являются работающие до настоящего времени реакторы серии АДЭ. Каждый такой реактор имеет мощность около 2000 МВт и нарабатывает примерно 0.5 т оружейного плутония в год. Получаемый в процессе работы пар используется для производства примерно 350 МВт тепла и 150 МВт электричества. В отличие от реакторов первого и второго поколений, реакторы третьего поколения имеют двухконтурную систему охлаждения с замкнутой циркуляцией воды по первому контуру, теплообменник, парогенератор, и турбину для производства электричества.

Мощность

до 2000 Мвт

Производство электроэнергии

150-200 Мвт (э)

Производство тепла

300-350 Гкал/ч

Замедлитель

графит

Теплоноситель

вода

Число каналов

2832

Число топливных элементов в канале

66-67

Общая загрузка природного урана

300-350 т

Общая загрузка высокообогащенного урана

75 кг

Глубина выгорания топлива

600-1000 МВт-дн/т

Топливная композиция (природный уран)

металлический природный уран

Топливная композиция (ВОУ)

дисперсное (8.5% U02 в алюминиевой матрице)

Диаметр стержня

35 мм

Материал оболочки

алюминиевый сплав

Толщина оболочки

> 1 мм

Хранение отработавшего топлива

мокрое

Стандартное время хранения

6 месяцев

Максимально допустимое время хранения

18 месяцев

Табл. 3-2. Характеристики реактора АДЭ87




 






Военное обозрение

 
 
  Новости  
  Авиация  
  Россия  
  Флот  
  РВСН  
  Оружие  
  Страны  
  Фирмы  
  Книги  
  Видео  
  Фото  
  Словарь  
 



Реклама